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We use atomistic, stochastic Landau-Lifshitz-Slonczewski simulations to study the interaction between large
thermal fluctuations and spin-transfer torques in the magnetic layers of spin valves. At temperatures near the
Curie temperature TC, spin currents measurably change the size of the magnetization �i.e., there is a longitu-
dinal spin-transfer effect�. The change in magnetization of the free magnetic layer in a spin valve modifies the
temperature dependence of the applied field-applied current phase diagram for temperatures near TC. These
atomistic simulations can be accurately described by a Landau-Lifshitz-Bloch+Slonczewski equation, which is
a thermally averaged mean-field theory. We use this equation to find the stability phase diagram of a ferro-
magnetic layer near its Curie temperature. Both the simulation and the mean-field theory show that a longitu-
dinal spin-transfer effect can be a substantial fraction of the magnetization close to TC.
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I. INTRODUCTION

Spin-transfer torque describes the interaction between the
spin of itinerant, current-carrying electrons and the spins of
the equilibrium electrons which comprise the magnetization
of a ferromagnet. This torque results from the spin-
dependent exchange-correlation electron-electron interac-
tion, and leads to the mutual precession of equilibrium and
nonequilibrium spins around the total spin. In spin valves
with sufficiently high current density, spin-transfer torque
can excite a free ferromagnetic layer to irreversibly switch
between two stable configurations �typically along an easy
axis, parallel, or antiparallel to an applied magnetic field�, or
to undergo microwave oscillations. Previous considerations
of spin-transfer torque mostly focus on the transverse re-
sponse of the magnetization to spin currents.1–4 This is ap-
propriate since the temperatures used in spin valve experi-
ments are substantially below the Curie temperature TC of
the ferromagnets, so that longitudinal fluctuations can be ig-
nored. Near TC, one expects an interplay between the large
thermal fluctuations and the nonequilibrium spin-transfer
torque. Generally speaking, theories of critical phenomena in
out-of-equilibrium systems have only recently been
developed,5,6 and there remain many open questions on this
topic.

Even far from the Curie temperature, temperature plays
an important role in quantitatively analyzing the dependence
of the magnetic orientation on the applied field and applied
current. The effect of finite temperature on spin dynamics in
the presence of spin-transfer torque has been modeled with
the macrospin approximation �fixed magnetization length� by
adding a Slonczewski torque to the Langevin equation de-
scribing the stochastic spin dynamics,7,8 and by solving the
Fokker-Planck equation with the spin-transfer torque term
added to the deterministic dynamics.9 The Keldysh formal-
ism provides a formal derivation of the stochastic equation of
motion10 for the nonequilibrium �i.e., current-carrying� sys-
tem for a single spin of fixed magnitude. These treatments
successfully describe the thermal characteristics of nanomag-
nets under the action of spin torques, such as dwell times and

other details of thermally activated switching.
For materials such as GaMnAs, experiments are done

near TC, so that the size of the magnetization is substantially
reduced from its low temperature value, and undergoes size-
able fluctuations. In this case, the relevance of a macrospin
model is not clear. For field-driven dynamics, the longitudi-
nal fluctuations near TC can be treated in an approach that
culminates in the construction of the Landau-Lifshitz-Bloch
�LLB� equation,11 which is an extension of the familiar
Landau-Lifshitz equation with an additional longitudinal de-
gree of freedom. Here, we extend this treatment by including
spin-transfer torques, which can then be studied at tempera-
tures near the Curie temperature.

The nature of the magnetic order at or above TC is itself a
difficult and complex problem. Models of magnetism near
the phase transition generally fall between a disordered-
local-moment �DLM� picture,12,13 in which spins of constant
magnitude occupy lattice sites and fluctuate in direction, and
a pure Stoner model, in which all of the �itinerant� spins
align and the transition is due to a vanishing moment mag-
nitude. The fluctuating local band theory lies somewhere be-
tween these extremes;14,15 there are a number of theories
which can bridge the gap between the DLM and Stoner pic-
tures of magnetic phase transition.16,17 The inclusion of spin-
transfer torque complicates this already complex problem.
For example, the applicability of standard statistical mechan-
ics techniques to this nonequilibrium system is not a priori
clear.10,18 For this reason, we adopt a rather pragmatic ap-
proach and extend the work of Garanin11 to include the spin-
transfer torque. This treatment is firmly rooted in the DLM
end of the spectrum of phase transition models. We discuss
the implications of this for the temperature dependence of
the spin-transfer torque in the conclusion.

There are a number of other issues that complicate mag-
netic dynamics near TC, including the temperature depen-
dence of more basic magnetic properties such as magnetic
damping and magnetocrystalline anisotropy, as well as the
temperature dependence of the spin-transfer torque itself. We
use an atomistic approach for the stochastic dynamics of a
local-moment ferromagnet with the inclusion of spin-transfer
torque. This “stochastic-local-moment model” is appropriate
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for systems such as the dilute magnetic semiconductor GaM-
nAs. Our use of simple approximations for the temperature
dependence of the magnetic anisotropy, demagnetization
field, and damping allow us to focus in the interplay between
thermal fluctuations and spin-transfer torque. We find that
within this model, spin currents can change the size of the
magnetization. We give an expression for this “spin-current
longitudinal susceptibility,” and propose an experimental
scheme to measure this effect. The effect we describe is dif-
ferent than spin accumulation, which also changes the size of
the moment. Here we describe the change in ordering in a
disordered-local-moment model. Spin accumulation de-
scribes the change of the moment in Stoner-like models.
There is spin accumulation in the conduction electrons in the
model we consider, but it is negligible compared to the
changes of the magnetization in the disordered-local mo-
ments.

We then construct a Landau-Lifshitz-Bloch
+Slonczewski �LLBS� equation to describe both longitudinal
fluctuations and spin-transfer torques �i.e., a single-domain
model with variable magnetization length�. Following Ref.
19, we verify the applicability of this single-domain model
by comparing its results to the stochastic-local-moment
model. We then analyze the single-domain model to find the
applied field-applied current phase diagram for different tem-
peratures. We find that critical switching currents are reduced
by the same mechanism exploited in heat assisted magnetic
recording, namely, the temperature-induced reduction in the
magnetic anisotropy.20 We also find that regions of the phase
diagram which have been experimentally unattainable be-
come relevant at high temperatures. The dependence of criti-
cal currents on temperature in these regions can provide
quantitative details about the temperature dependence of
spin-transfer torque.

II. METHOD

To study the interplay between temperature and spin-
transfer torque, we treat a temperature-independent spin-
current flux incident on a free layer at a variable temperature.
This approach is appropriate for spin valves with fixed-layer
magnetizations having Curie temperatures TC

1 much greater
than the variable temperature and the Curie temperature TC

2

of the free layer �see Fig. 1�. We choose the spin-transfer
torque to have the form

HI�Si � Si � ẑ� , �1�

where HI parameterizes the spin-transfer torque:
HI=−Ip�B /�0e�Ms

0�A, where I is the applied current, p is
the spin polarization of the current, Ms

0 is the zero-
temperature magnetization, � is the free layer thickness, A is
the transverse layer area, and e is the �negative� electron
charge. This approximation assumes that the incoming spin
current acts uniformly on the free layer magnetization and is
based on two expectations—that the spin-transfer torque is
largely interfacial but the exchange interaction in the direc-
tion of current flow is strong enough to minimize fluctuations
in that direction. Substantial spatial and temporal inhomoge-
neities in the magnetization should induce rather irregular
spatial patterns in the spin currents carried by propagating
states. This will lead to large dephasing effects, so that the
total spin current should rapidly decay away from the inter-
face as in the conventional picture of spin-transfer torques.3

In addition, in this temperature regime, and for thin layers
��3 nm�, magnetic nonuniformities in the direction trans-
verse to current flow should be more substantial than non-
uniformities along the current flow resulting from a localized
spin-transfer torque. This assumption is most applicable to
the DLM model of a ferromagnet near its transition tempera-
ture. If a Stoner type of transition is assumed, then there is a
much weaker but uniform exchange field, and the assump-
tion that all of the transverse spin current is absorbed is not
necessarily as well founded.

A. Model I: Stochastic local moment

We adopt three approaches to model the system. The first
is an atomistic lattice model of normalized spins S, which we
treat with a stochastic Landau-Lifshitz �SLL� equation. �As
discussed in the introduction, the use of temperature-
independent spins in the lattice makes this model more rel-
evant to a disordered-local-moment model of the magnetic
phase transition than to a Stoner type phase transition.� We
include nearest-neighbor Heisenberg coupling with exchange
constant J, and an easy-axis anisotropy field of magnitude
Han in the ẑ direction. To model the temperature dependence
of the anisotropy, we make the ansatz that the magnitude of
anisotropy at temperature T is proportional to the reduced
magnetization m�T�=Ms�T� /Ms

0,

Han�T� = Han�T = 0�m�T� , �2�

so that the anisotropy field on spin i is given by Han
i �T�

=Han�T=0��S�Si
z, where the bar indicates a spatial average.

This choice gives an effective �i.e., spatially and thermally
averaged� anisotropy that varies as m3�T�, which is the be-
havior typically ascribed to uniaxial anisotropies.21 We
model the demagnetization field of the thin layer by a hard-
axis anisotropy field with magnitude Hd in the ŷ direction.
We take the demagnetization field to be uniform on all spins
and given by Hd

i �T�=−Hd�T=0�Syŷ. This form of the hard-
axis field ensures that Hd�Ms�T�, and roughly captures the
nonlocal nature of the field. This form also simplifies the
numerics. Finally, we include an applied field Happ in the ẑ
direction. The Hamiltonian for spin i is then

FIG. 1. Schematic of system, two ferromagnetic layers with
different Curie temperatures. We suppose that TC

1 �TC
2 .
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Hi = J �
j�n.n.

Si · S j + �B�0�Han�T = 0��S�
2

�Si
z�2

− Hd�T = 0�Si
y�Sy� + HappSi

z� , �3�

where the sum in the first term is over nearest neighbors, �B
is the Bohr magneton, and �0 is the permeability of free
space. To model nonzero temperatures, we add damping �
and a stochastic field Hfl to the equation of motion implied
by Eq. �3�, with the standard statistical properties,

	Hfl
i �t�
 = 0, �4�

	Hfl
i �t�Hfl

j �t��
 =
�

1 + �2

2kBT

��
	ij	�t − t�� , �5�

where i , j are the Cartesian components of the field, kB is the
Boltzmann constant, � is the magnetic moment on each lat-
tice site, and � is the gyromagnetic ratio. We numerically
integrate the equation of motion using a second-order Heun
scheme.22 We add a Slonczewski-like spin-transfer torque
term to the equation of motion for the ith spin, which is
given finally as

Ṡi = − ��0�Si � �Heff + Hfl� − ��Si � Si � Heff�

+ HI�Si � Si � ẑ�� . �6�

The effective magnetic field is given by Heff=Happẑ
+Han�S�Si

zẑ−Hd�Sy�ŷ+J / ��B�0�� j�n.n.S j. We use both a bulk
geometry consisting of a N=483 periodic array of spins in
three dimensions �simple cubic lattice�, and a layer geometry
with an array of 100�100�15 spins. We employ the bulk
geometry in comparing the stochastic model behavior with
predictions from mean-field theory, and the layer geometry
for studying the effect of spin current on magnetization size.

B. Model II: Single domain with variable size

For our second approach, we derive a thermally averaged
version of the stochastic-local-moment model, where
nearest-neighbor exchange is replaced by its mean-field
value. In the absence of spin-transfer, the resulting equation
is known as the Landau-Lifshitz-Bloch equation. The details
of the derivation with the inclusion of spin-transfer torque
follow closely those in Ref. 11, so we omit them here. The
final “Landau-Lifshitz-Bloch-Slonczewski” equation �which,
for simplicity we will refer to as the “single-domain model”�
takes the form

ṁ = − ��0�m � Heff� +
2kBT

J0m2 m · ��Heff + HIẑ�m

−
1

m2�1 −
kBT

J0
�m � m � ��Heff + HIẑ�� , �7�

with an effective field given by

Heff = Happẑ + Hanm
2mzẑ − Hdmyŷ −

Ms
0

2

�m2

me
2 − 1�m , �8�

where Ms
0 is the zero-temperature saturation magnetization,

m=M /Ms
0 is the dimensionless magnetization with magni-

tude between zero and one, me�T� is the zero field, zero
current equilibrium magnetization: me�T�=B�J0 /kBT�, where
B is the Brillouin function. 
�T� is the longitudinal suscepti-
bility: 
�T�=Ms

0��me�T� /�Happ�. J0 is the zero wave-vector
component of the Fourier transformed exchange. The spin-
transfer torque is parameterized by HI, as described in the
previous section. The double cross product in Eq. �7� is the
familiar Landau-Lifshitz damping term, which describes the
relaxation of the magnetization direction to the nearest en-
ergy minimum. The term parallel to m distinguishes the LLB
equation from the Landau-Lifshitz equation. This longitudi-
nal term describes the relaxation of the size of the magneti-
zation to its steady state value, which is determined by the
temperature, applied fields, and applied currents.

The detailed dependence of the magnetic anisotropy on
temperature is generally material specific. We use the ther-
mal average of the anisotropy and demagnetization fields as
described in Eq. �3� of the stochastic-local-moment model.
This results in anisotropy and demagnetization fields which
depend on temperature through their m dependence, and vary
as m3�T� and m�T�, respectively. The magnetic exchange J0
can also depend on temperature. This dependence is stronger
for ferromagnets with indirect exchange interactions �such as
GaMnAs, where the magnetic interactions are mediated by
hole carriers�, and weaker for local-moment systems with
direct exchange �such as Fe�. For simplicity we treat J0 as
temperature-independent.

Finally we consider the standard Landau-Lifshitz equation
with a reduced but fixed saturation magnetization. We find in
Sec. III D that it is possible to appropriately modify the
damping coefficient in a standard Landau-Lifshitz approach
so that the phase diagram it predicts agrees qualitatively with
those predicted by the more complicated models.

III. RESULTS

A. Longitudinal spin-current susceptibility

In transition metal ferromagnets, longitudinal spin trans-
fer is typically quite small compared to the magnetization
and has a negligible effect on the magnetization dynamics.
�As discussed in the introduction, longitudinal spin transfer
may be due to spin accumulation, or transverse-spin-transfer-
induced ordering of local moments; the latter case is consid-
ered here.� However, for temperatures close to the Curie tem-
peratures, the longitudinal spin transfer can be a sizeable
fraction of the magnetization and can significantly affect the
dynamics.

For the single-domain model, it is straightforward to show
from Eq. �7� that the change in the magnetization in the
presence of spin current is

	m�I,T� =
HI

Ms
0


�T�
�

. �9�

In order to verify that this expression is also valid for the
stochastic-local-moment model, we use a lattice of 100
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�100�15 spins and calculate the susceptibilities. The re-
sults are shown in Fig. 2, which shows the longitudinal sus-
ceptibility to magnetic field and spin current. �In Fig. 2 
 is
divided by a combination of factors based on the dimension-
less variables we use: the magnetic field is scaled by the
exchange field J0 /�B�0, and the magnetization is scaled by
Ms

0.� In the simulation, the spins’ polar angle is initialized to
a uniform distribution between �=0 and �=�max, where �max
is chosen so that the initial spins’ average is equal to the
equilibrium value. We allow the system to relax to steady
state, and find the value of the magnetization and its fluctua-
tions by finding the average and standard deviation over an
interval of time �the appropriate time interval is temperature
dependent�. The fluctuations lead to the statistical uncertainty
shown in Fig. 2.

The spin-current susceptibility 
I is defined as 
I
=Ms

0��m /�HI�. We find that 
 and 
I� agree to within nu-
merical uncertainty, demonstrating that Eq. �9� �derived us-
ing the single-domain model� also accurately describes the
behavior of the stochastic-local-moment model.

The change in magnetization should be measurable. The
fractional change in the magnetization compared to the zero-
temperature saturation magnetization is

	m = � p�B

e��0�A�Ms
0�2��
�T�

�
�I . �10�

For T /TC=0.95, so that �
 ·J0 /�0�BMs
0�=7 �from Fig. 2�,

and with an exchange field of J0 /�B�0=1.2�108 A /m
�which corresponds to a TC of 150 K in a cubic nearest-
neighbor Heisenberg model�, Ms

0=106 A /m, I /A
=1011 A /m2, p=0.5, �=0.01, and �=3 nm gives a change
compared to the zero-temperature value of 	m=5%. Since
the magnetization is reduced to approximately 20% of its
zero-temperature value at T /TC=0.95, the fractional change
in the magnetization due to the current is approximately
25%.

A notable aspect of this longitudinal spin transfer is that
the size of the magnetization can either be increased or de-
creased according to the direction of current flow. For paral-
lel average magnetizations, with electron flow from fixed to
free layer, the free layer moment increases, while electron

flow in the opposite direction decreases the free layer mo-
ment. This contrasts with current-induced Joule heating,
which always decreases the magnetization.

This distinction can be exploited to probe the longitudinal
spin transfer by using the experimental scheme shown in Fig.
3. We consider the case where TC

1 �T�TC
2 . We choose sign

conventions such that a positive Happ aligns with the fixed
layer, and a positive current represents electron flow from
fixed to free layer. In the absence of an applied current �I
=HI=0, black line in Fig. 3�, the application of a magnetic
field will partially order the free layer to align or antialign
with the fixed layer. This should cause the resistance R of the
device to change in some way, according to the giant mag-
netoresistance effect and magnetic order induced in the free
layer �the detailed dependence of R on Happ is not important
here�. If a positive current I0 is applied, then the longitudinal
spin transfer induces partial ordering of the free layer, so that
m�Happ=0�=+
IHI0 /Ms

0. Then the curve of m�Happ�, and
therefore the curve R�Happ� is simply shifted by +
IHI0 /

�the black dotted curve in Fig. 3�. If a negative current den-
sity −�I0� is applied, then m�Happ=0�=−
IHI0 /Ms

0 and the
m�Happ� and R�Happ� curves are shifted by −
IHI0 /
 �red
dashed curve in Fig. 3�. This rigid shift represents a unique
signature of longitudinal spin transfer. �Note that a simple
current-induced change in R at finite applied field may be
due to transverse spin transfer, so that this rigid shift is a key
signature to the longitudinal spin transfer.�

Using the same parameters as before, we estimate a total
shift 	=2
IHI0 /
 between R�Happ� for positive and negative
current to be on the order of 8�105 A /m. ��1 T� Eq. �10�
indicates that materials with small exchange field �or small
TC�, and those that can support large current densities show
the effect most strongly. This suggests that weak metallic
ferromagnets such as Gd �TC=300 K�, and Fe alloys such as
FeS2 and FeBe5 �TC=270 K� �Ref. 23� may be good candi-
dates for free layer material.

B. Stochastic local moment vs single domain model

The single-domain model represents a vast simplification
to the stochastic-local-moment model. The degree to which
the single-domain model reproduces the behavior of the

0 0.5 1 1.5
0

2

4

6

8

10

T / TC

χI α

χ
χ
/(
µ 0
µ B
M
s0
/J

0)

FIG. 2. �Color online� The magnetic field and spin-current sus-
ceptibility versus temperature for the stochastic Landau-Lifshitz
equation in the layer geometry. The spin-current susceptibility is
multiplied by �. The error bars indicate statistical uncertainty �one
standard deviation�. In the plot, 
 is rescaled by �0�BMs

0 /J.

FIG. 3. �Color online� Experimental scheme for detecting lon-
gitudinal spin transfer: for TC

1 �T�TC
2 , an applied field Happ

changes the resistance R via the magnetoresistance effect. The ap-
plication of a positive and negative current density of magnitude I0

shifts m�Happ� in the positive and negative direction, respectively,
via longitudinal spin transfer. The R�Happ� curves therefore shift to
the positive and negative directions.
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stochastic-local-moment model is not a priori obvious, and
is the subject of this section. We consider a current-induced
magnetic excitation for the bulk lattice geometry at various
temperatures. The average magnetization is initialized at a
45° angle with respect to the +ẑ direction �the individual
spins’ initial direction is distributed uniformly within 3° in
the �,  direction about �=45°, =0°�. The spin-transfer
torque is applied to excite the magnetization away from the ẑ
direction. In our numerics, we rescale time t to �= ��J /�B�t,
which rescales the magnetic fields Heff by the exchange field
Hex=J /�0�B. Dimensionless fields are denoted by lower-
case: happ=Happ�0�B /J, etc. The dimensionless spin torque
is denoted by japp, where japp=HI�0�B /J. The parameters
used are an applied field of happ=0.0001, a demagnetization
field of hd=0.01, a current of japp=−0.0002, and damping of
�=0.1 �the artificially high damping was chosen to allow the
numerical simulation of the switching to be carried out in a
reasonable time�. The time step used for the numerical inte-
gration is d�=0.0002. We vary the temperature T, and
present results in terms of the scaled temperature T�=T /TC.

As we increase temperature, we obtain trajectories of
varying complexity. Figure 4 shows the trajectories obtained
with the single-domain model and a realization of the
stochastic-local-moment �the spatial average of the
stochastic-local-moment model is shown�, for T�=0.24. Fig-
ure 5 shows the temperature dependence of the trajectories �ẑ
component shown� obtained with the single-domain model
with several realizations of the stochastic-local-moment
model. For this range of parameters, the magnetic dynamics
evolves from steady oscillations to current-induced switch-
ing as the temperature is increased. Generally, the level of
correspondence between the two is qualitatively good, al-
though it varies between different realizations of the stochas-
tic dynamics. We can conclude from this data that the single-
domain model qualitatively captures the features of the full
stochastic-local-moment model.

The trajectories for t=0.08 indicate that a realization of
stochastic dynamics can exhibit the crossover from preces-
sion to stable switching, whereas at this temperature the tra-
jectory obtained with the single-domain model shows only

oscillations. This illustrates an important distinction between
the stochastic local moment and single-domain models. The
single-domain model describes the thermally averaged mag-
netization, derived using an assumed probability distribution
function �in this case, a distribution function most appropri-
ate for temperatures well above and below energy barriers�.
For this reason, the single-domain model does not contain
information about fluctuations, and in particular does not
capture stochastic switching over the energy barrier. The
fluctuations may be obtained by solving the Fokker-Planck
equation, or by supplementing the single-domain model with
stochastic fields, as done in Ref. 24.

C. Applied field-applied current phase diagram

We next study the stability of the single-domain model.
Both high temperatures and the longitudinal degree of free-
dom change the applied field-applied current phase diagram
of the free magnetic layer. Figure 6 shows the generic topol-
ogy for regions of stability for the parallel �“P,” or +ẑ direc-
tion� and antiparallel �“AP,” or −ẑ direction� fixed points. We
focus on the stability of the AP configuration for positive
applied fields �the dashed boundary in the upper half-plane
of Fig. 6. We first briefly describe the main qualitative fea-
tures before providing a mathematical description. For ap-
plied fields between hanm

3 and hanm
3+hdm, the stability

boundary is a horizontal parabola, while for other values of
applied field, the stability boundary is linear with slope 1 /�.
For applied fields with magnitude less than hanm, there is
hysteresis in the current switching. For T=0, this phase dia-
gram reduces to the known form found experimentally.25 As
T increases, the size of the hysteretic region �and the switch-
ing current� decreases. Also the range of field with the para-
bolic boundary decreases, and the outer edge of the parabola

Single Domain
Stochastic Local Moment

Y

Z
X

FIG. 4. �Color online� Single-domain �black line� and
stochastic-local-moment �red �gray� line� trajectories for T�=0.24
The single-domain model shows persistent oscillations, while the
stochastic-local-moment model undergoes switching. The hard axis
and easy axis are in the ŷ and ẑ directions, respectively.

−1

0

1
T’=0.001

m
z

−1

0

1
T’=0.08

500 1000 1500
−1

0

1
T’=0.24

τ

m
z

500 1000 1500
−1

0

1
T’=0.86

τ

FIG. 5. �Color online� Comparison of the �ẑ component� mag-
netization time evolution with spin-transfer torque for the atomistic
stochastic simulation and the LLB�Slonczewski equation for vari-
ous reduced temperatures T�=T /TC. The dashed line gives the LLB
�Slonczewski trajectory, while the solid lines show various realiza-
tions of the stochastic trajectory. The dimensionless time � is given
by �= ��J /�B�t.
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gets pulled in closer to 0. For sufficiently high temperatures,
this parabolic stability boundary should be experimentally
accessible.

A quantitative description of the phase diagram follows
from Eq. �7�. We determine the stability of fixed points using
the standard method of linearizing Eq. �7� about a fixed point
and finding parameter-dependent eigenvalues �. A positive
real part of � indicates a loss of stability. This analysis leads
to the following condition for instability of the antiparallel
configuration �where it should be noted that m depends on
japp through m=me+ 
̃�h+

japp

� �, and 
̃ is the rescaled suscep-
tibility, given by 
̃=
�J0 /�0�BMs

0��:

Re� japp
crit + �h + hanm

3 +
hd

2
m

1 − T�

1 − 3T�

−
m

2
̃
�1 −

m2

me
2� 2T�

1 − 3T�
�

−
m�− �h + hanm

3��h + hanm
3 + hdm�

1 − 3T�
� = 0.

This leads to a cubic equation for japp
crit . Assuming me�
̃�h

+
japp

� �, and expanding to 0th order in 
̃ leads to an approxi-
mate, closed form for japp

crit . Again we distinguish between
different regimes of applied field. For h�” �hanm

3 ,hanm
3

+hdm�

japp
crit = ��h +

hd

2
me + hanme

31 − 3T�

1 − T�
� , �11�

where again me is the equilibrium magnetization in the ab-
sence of applied field and applied current. Equation �11�
shows that the slope of the boundary is temperature indepen-
dent, and is given by 1 /� �the intrinsic damping � is as-
sumed to be temperature independent�. The temperature in-
dependence of the slope follows from the fact that the spin-
transfer torque increases like 1 /m�T�, but the effective
damping rate also increases as 1 /m�T�. The intercepts of this
boundary line are temperature dependent due to the tempera-
ture dependence of m. The contribution from the easy-axis
anisotropy field has an additional temperature dependence,
but the magnitude of this field is much smaller than the de-

magnetization field, so it does not play an important role.
The critical current at zero field is reduced by m�T� because
of the reduction in the demagnetization field. This is impor-
tant because the demagnetization field is usually larger than
applied fields, and is therefore the primary impediment to
current-induced switching. Its reduction through increased
temperature offers a route to reduced critical switching cur-
rents.

For hanm
3�h�hanm

3+hdm, a very large spin torque is
required to stabilize the AP configuration. The values of cur-
rent for which the AP configuration is stabilized are much
higher than those attainable experimentally, so that for this
range of fields the AP configuration is not seen.26 The ap-
proximate critical current along the AP stability boundary is

japp
crit =

me
�h�hdme − h�

1 − T�
. �12�

The outer boundary of the parabolic stability line is reduced
at high temperature, and this reduction can also be traced
back to the reduced magnetic anisotropy. For low tempera-
tures, the application of spin-transfer torques results in an
elliptical precession mostly in the easy plane about the −ẑ
fixed point. To stabilize the AP configuration in this regime,
the spin-transfer torque must overcome the precessional
torque �usually, the spin-transfer torque must overcome the
much weaker damping torque�. Assuming h=hdm /2 for defi-
niteness, the precessional torque decreases with T as hdm�T�,
while the spin-transfer torque increases like 1 /m. This im-
plies a value for the maximum reach of the parabola of japp
=m2�T�hd / �2�1−T��. Plugging in typical values for material
parameters �the same used in Sec. III A� leads to a critical
current of 1012 A /m2 for T=0.95TC. This is an order of
magnitude smaller than the zero-temperature case. The be-
havior of this critical current versus temperature at a fixed
applied field is shown in Fig. 7. �Solid line gives LLBS
result.� It should also be noted that the stochastic trajectories
�shown in Fig. 5� indicate that thermal fluctuations can ef-
fectively drive the system out of the precessional state and
into the static antiparallel configuration.

FIG. 6. Schematic of parallel/antiparallel stability versus applied
field and applied current. The hysteretic box near the origin and the
fully unstable regions �white parabolic shapes� contract in size with
increasing temperature.
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FIG. 7. Critical current versus temperature for LLBS and LLS
equations. The parameters are: happ=−0.001, hd=0.01, han=0.0001.
Recall that all fields are scaled by the exchange field.
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D. Comparison with Landau-Lifshitz-Slonczewski

The Landau-Lifshitz-Slonczewski �LLS� equation can be
modified to emulate the single-domain model discussed so
far �i.e., the Landau-Lifshitz-Bloch-Slonczewski �LLBS�
equation�. Based on the qualitative behavior of the LLBS
equation, a suitable form for a temperature dependent LLS
equation for a nanomagnet of reduced magnetization length
m and orientation n̂ is

ṅ̂ = − ��0�n̂ � Heff −
�

m
n̂ � n̂ � Heff −

HI

m
n̂ � n̂ � ẑ� ,

where Heff=Happ−mHdnyŷ+m3Hannzẑ, and the temperature
dependence is contained entirely in m�T�. The differences
between this LLS equation and the LLBS equation are quan-
titative �as opposed to qualitative� in nature. One difference
is in the dependence of the critical current on temperature for
hanm

3�h�hanm
3+hdm. Figure 7 shows the prediction based

on the LLS equation.
The LLS equation neglects the longitudinal spin transfer

and applied-field susceptibility, which are responsible for dy-
namically changing the size of the magnetization �and there-
fore the size of the effective fields� during a switching event,
or other magnetization dynamics. However, Fig. 7 shows
qualitative agreement between the critical currents found in
both LLBS and LLS models. This is indicative of the fact
that for the applied field-applied current phase diagram, the
spin-current and applied-field longitudinal susceptibilities
play a role that is secondary to the more pronounced effects
of temperature reduced anisotropies.

IV. DISCUSSION

Spin-transfer torques can affect the longitudinal fluctua-
tions of a ferromagnet near its critical temperature. To inves-
tigate these effects, we studied an atomistic, stochastic
Landau-Lifshitz-Slonczewski simulation at high tempera-
tures. We find that there is a longitudinal spin-transfer effect,
and estimate that at temperatures near TC, spin currents can
measurably change the size of the magnetization. We then
supplemented the Landau-Lifshitz-Bloch equation with a
Slonczewski torque term, and verified that this model cap-
tures the qualitative features of the stochastic simulations.
We showed that the applied field-applied current phase dia-
gram undergoes large changes in the presence of high tem-
peratures, and that these changes may be useful for reducing
critical switching currents and for studying the detailed be-
havior of the temperature dependence of the spin-transfer
torque. It should be emphasized that these results are predi-

cated on a disordered-local-moment model of a ferromag-
netic phase transition. This model leads to an effective damp-
ing that increases with temperature as 1 /m�T�, which
effectively counteracts the similar 1 /m�T� increase in the
magnitude of spin-transfer torque. Materials that undergo a
Stoner transition should also have a 1 /m�T� dependence for
the spin-transfer torque, but a different temperature depen-
dence for damping. Such materials should therefore behave
differently than the model considered here.

The experimental system relevant for the effects we de-
scribe �shown schematically in Fig. 1� should be relatively
straightforward to fabricate. Jiang et al. considered a similar
system,27 although that work dealt with other issues such as
the ferrimagnet compensation point for magnetization and
total angular momentum. By considering simpler ferromag-
nets with different Curie temperature, the role of temperature
may be more easily inferred. It is of course necessary to
account for Joule heating in assessing the detailed tempera-
ture dependence of the spin-transfer torque. However recent
experiments on domain wall motion illustrate the feasibility
of compensating for this effect.28 On the other hand, experi-
ments conducted at fixed current with varying ambient tem-
perature and applied fields may offer a more straightforward
route to observing the longitudinal spin-transfer effect.

There have been experiments performed on dilute mag-
netic semiconductor spin valves.29,30 In this case it was rec-
ognized that the temperature dependence of the magnetic an-
isotropy was key to interpreting the measured switching
currents. However, the additional complication of strong
spin-orbit coupling in GaMnAs makes direct application of
the theory presented here problematic: the spin-orbit cou-
pling invalidates the picture of the spin-transfer torque as
being equal to the imbalance between incoming and outgo-
ing spin current.31 There have additionally been many ex-
periments with dilute magnetic semiconductors dealing with
domain wall motion, where thermal effects play an important
role in even the qualitative aspects of the domain wall
behavior.28 There are additional challenges associated with
extending this work from spin valves to continuous magnetic
textures. Among these is the renormalization of the exchange
interaction associated with the coarse graining of the magne-
tization, which becomes more important at higher
temperatures.32 In addition, the crucial role played by the
demagnetization field in intrinsic domain wall pinning im-
plies that the finite temperature treatment of the demagneti-
zation field must also be handled more carefully. For these
reasons the spin valve geometry may provide greater experi-
mental control and admit a simpler theoretical description.
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